
regression - When should I use lasso vs ridge? - Cross Validated
Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values …
regression - How to calculate the slope of a line of best fit that ...
Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: …
Multivariable vs multivariate regression - Cross Validated
Feb 2, 2020 · Multivariable regression is any regression model where there is more than one explanatory variable. For this reason it is often simply known as "multiple regression". In the …
How should outliers be dealt with in linear regression analysis ...
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
Support Vector Regression vs. Linear Regression - Cross Validated
Dec 5, 2023 · Linear regression can use the same kernels used in SVR, and SVR can also use the linear kernel. Given only the coefficients from such models, it would be impossible to …
regression - Difference between forecast and prediction ... - Cross ...
I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …
correlation - What is the difference between linear regression on y ...
The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …
regression - What is residual standard error? - Cross Validated
A quick question: Is "residual standard error" the same as "residual standard deviation"? Gelman and Hill (p.41, 2007) seem to use them interchangeably.
regression - Interpreting the residuals vs. fitted values plot for ...
Consider the following figure from Faraway's Linear Models with R (2005, p. 59). The first plot seems to indicate that the residuals and the fitted values are uncorrelated, as they should be in a
How to derive the standard error of linear regression coefficient
another way of thinking about the n-2 df is that it's because we use 2 means to estimate the slope coefficient (the mean of Y and X) df from Wikipedia: "...In general, the degrees of freedom of …